DocumentCode :
666253
Title :
Distributed synchronized tracking control of Euler-Lagrange systems on directed graphs
Author :
Yang, Z-Jiang ; Pan Qin
Author_Institution :
Dept. of Intell. Syst. Eng., Ibaraki Univ., Hitachi, Japan
fYear :
2013
fDate :
10-13 Nov. 2013
Firstpage :
3480
Lastpage :
3485
Abstract :
This paper is concerned with the distributed synchronization tracking control problem of multiple Euler-Lagrange systems on a directed graph which contains a spanning tree with the leader node being the root node. Compared to the case of undirected communication graph, the problem is more challenging since the Laplacian matrix of the communication graph is asymmetric such that it is not easy to use the `skew-symmetric´ property of the Euler-Lagrange systems for stability analysis. In each agent, a local controller is designed with the disturbance observers and sliding mode control terms to suppress the mutual interactions among the agents and the modelling uncertainties. The conditions for guaranteed control performance are clarified and a simulation example demonstrates the performance of the distributed controllers.
Keywords :
directed graphs; distributed control; matrix algebra; stability; trees (mathematics); variable structure systems; Euler-Lagrange system; Laplacian matrix; directed graph; distributed synchronized tracking control; disturbance observer; skew-symmetric property; sliding mode control; spanning tree; stability analysis; undirected communication graph; Laplace equations; Sliding mode control; Stability analysis; Synchronization; Torque; Trajectory; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Industrial Electronics Society, IECON 2013 - 39th Annual Conference of the IEEE
Conference_Location :
Vienna
ISSN :
1553-572X
Type :
conf
DOI :
10.1109/IECON.2013.6699688
Filename :
6699688
Link To Document :
بازگشت