DocumentCode :
6689
Title :
Hierarchical Prediction and Context Adaptive Coding for Lossless Color Image Compression
Author :
Seyun Kim ; Nam Ik Cho
Author_Institution :
Samsung Electron., Yongin, South Korea
Volume :
23
Issue :
1
fYear :
2014
fDate :
Jan. 2014
Firstpage :
445
Lastpage :
449
Abstract :
This paper presents a new lossless color image compression algorithm, based on the hierarchical prediction and context-adaptive arithmetic coding. For the lossless compression of an RGB image, it is first decorrelated by a reversible color transform and then Y component is encoded by a conventional lossless grayscale image compression method. For encoding the chrominance images, we develop a hierarchical scheme that enables the use of upper, left, and lower pixels for the pixel prediction, whereas the conventional raster scan prediction methods use upper and left pixels. An appropriate context model for the prediction error is also defined and the arithmetic coding is applied to the error signal corresponding to each context. For several sets of images, it is shown that the proposed method further reduces the bit rates compared with JPEG2000 and JPEG-XR.
Keywords :
adaptive codes; arithmetic codes; data compression; decorrelation; image coding; image colour analysis; inverse transforms; prediction theory; RGB image; chrominance image encoding; context adaptive arithmetic coding; decorrelation; error signal; hierarchical prediction; hierarchical scheme; lossless color image compression; lossless grayscale image compression method; pixel prediction; prediction error; reversible color transform; Color; Context; Image coding; Image color analysis; Transform coding; Transforms; Xenon; Lossless color image compression; context adaptive arithmetic coding; hierarchical prediction; reversible color transform;
fLanguage :
English
Journal_Title :
Image Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1057-7149
Type :
jour
DOI :
10.1109/TIP.2013.2293428
Filename :
6678216
Link To Document :
بازگشت