DocumentCode
669269
Title
Image database clustering to improve exudate detection in color fundus images
Author
Nagy, Benedek ; Antal, B. ; Hajdu, Andras
Author_Institution
Fac. of Inf., Univ. of Debrecen, Debrecen, Hungary
fYear
2013
fDate
4-6 Sept. 2013
Firstpage
727
Lastpage
731
Abstract
In this paper a novel approach to improve exudate detection in color fundus images is proposed. Image databases usually contain images with different characteristics, thus determining an optimal parameter setting of an algorithm is a challenging task. To overcome this problem we cluster the image databases. For each cluster an optimal parameter setting is determined for the same algorithm. We extract Haralick features from the image, and apply k-means clustering to obtain the clusters. We tested our approach on a publicly available database, where the proposed approach improved the performance of a state-of-the-art exudate detector.
Keywords
eye; medical image processing; object detection; pattern clustering; visual databases; Haralick features; color fundus images; image database clustering; k-means clustering; optimal parameter setting; publicly available database; state-of-the-art exudate detector; Clustering algorithms; Detectors; Image color analysis; Image databases; Retina; Sensitivity; Signal processing algorithms;
fLanguage
English
Publisher
ieee
Conference_Titel
Image and Signal Processing and Analysis (ISPA), 2013 8th International Symposium on
Conference_Location
Trieste
Type
conf
DOI
10.1109/ISPA.2013.6703833
Filename
6703833
Link To Document