DocumentCode :
670220
Title :
Hybrid MLP-RBF model structure for short-term internal temperature prediction in greenhouse environments
Author :
Eredics, Peter ; Dobrowiecki, Tadeusz P.
Author_Institution :
Dept. of Meas. & Inf. Syst., Budapest Univ. of Technol. & Econ., Budapest, Hungary
fYear :
2013
fDate :
19-21 Nov. 2013
Firstpage :
377
Lastpage :
380
Abstract :
A wide variety of greenhouse temperature models have been proposed in the literature in the previous years. This paper proposes a hybrid modeling method incorporating a multilayer perceptron neural network and a radial basis function neural network aimed to be more accurate on input regions not covered by training data. The results show that the proposed method has better performance compared to the original physical-neural hybrid model if the input values are not far from the input range of the values used for training.
Keywords :
atmospheric temperature; greenhouses; multilayer perceptrons; neurocontrollers; radial basis function networks; temperature control; greenhouse environment; greenhouse temperature model; hybrid MLP-RBF model structure; hybrid modeling method; multilayer perceptron neural network; physical-neural hybrid model; radial basis function neural network; short-term internal temperature prediction; Air pollution; Computational modeling; Data models; Green products; Mathematical model; Predictive models; Training;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Intelligence and Informatics (CINTI), 2013 IEEE 14th International Symposium on
Conference_Location :
Budapest
Print_ISBN :
978-1-4799-0194-4
Type :
conf
DOI :
10.1109/CINTI.2013.6705225
Filename :
6705225
Link To Document :
بازگشت