DocumentCode :
671548
Title :
Detection of spatiotemporal phase patterns in ECoG using adaptive mixture models
Author :
Ilin, Roman ; Kozma, Robert
Author_Institution :
Sensors Directorate, Air Force Res. Lab., Wright-Patterson AFB, OH, USA
fYear :
2013
fDate :
4-9 Aug. 2013
Firstpage :
1
Lastpage :
7
Abstract :
Propagating phase patterns of neural activity in the cortex have been found to serve as useful markers for the identification of neural correlates of cognition. In this work we develop an automatic method to detect phase propagation in the form of cones using adaptive mixture models. The present work is the first demonstration of this methodology in actual Electrocorticogram (ECoG) data. The paper discusses results obtained with this novel method.
Keywords :
bioelectric phenomena; cognition; neurophysiology; ECoG data; adaptive mixture models; cognition; cones; cortex; electrocorticogram data; neural activity; phase pattern propagation; spatiotemporal phase pattern detection; Biological system modeling; Brain models; Electroencephalography; Finite impulse response filters; Rabbits; Transforms; Dynamic Logic; Electrocorticogram; Finite Mixture Models; Hilbert Phase Cone; Phase Synchronization; Transform;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks (IJCNN), The 2013 International Joint Conference on
Conference_Location :
Dallas, TX
ISSN :
2161-4393
Print_ISBN :
978-1-4673-6128-6
Type :
conf
DOI :
10.1109/IJCNN.2013.6706888
Filename :
6706888
Link To Document :
بازگشت