• DocumentCode
    671679
  • Title

    A parameter-free kernel design based on cumulative distribution function for correntropy

  • Author

    Jongmin Lee ; Pingping Zhu ; Principe, Jose C.

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Univ. of Florida, Gainesville, FL, USA
  • fYear
    2013
  • fDate
    4-9 Aug. 2013
  • Firstpage
    1
  • Lastpage
    5
  • Abstract
    This paper proposes a parameter-free kernel that is translation invariant and positive definite. The new kernel is based on the data cumulative distribution function (CDF) that provides all the statistical information about the observed samples. Without an explicit kernel size parameter, this novel kernel is used to define the autocorrentropy function, which is a generalized similarity measure, and spectral density estimator. Numerical examples show that the proposed method provides comparable performance to the existing Gaussian kernel with optimized kernel size.
  • Keywords
    entropy; functions; statistics; CDF; Gaussian kernel; autocorrentropy function; cumulative distribution function; generalized similarity measure; parameter-free kernel design; positive definite kernel; spectral density estimator; translation invariant kernel; Correlation; Estimation; Fourier transforms; Kernel; Noise; Random processes;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Neural Networks (IJCNN), The 2013 International Joint Conference on
  • Conference_Location
    Dallas, TX
  • ISSN
    2161-4393
  • Print_ISBN
    978-1-4673-6128-6
  • Type

    conf

  • DOI
    10.1109/IJCNN.2013.6707021
  • Filename
    6707021