DocumentCode :
674878
Title :
Marginal likelihoods for distributed estimation of graphical model parameters
Author :
Zhaoshi Meng ; Wei, Dennis ; Hero, Alfred O. ; Wiesel, Ami
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Univ. of Michigan, Ann Arbor, MI, USA
fYear :
2013
fDate :
15-18 Dec. 2013
Firstpage :
73
Lastpage :
76
Abstract :
This paper considers the estimation of graphical model parameters with distributed data collection and computation. We first discuss the use and limitations of well-known distributed methods for marginal inference in the context of parameter estimation. We then describe an alternative framework for distributed parameter estimation based on maximizing marginal likelihoods. Each node independently estimates local parameters through solving a low-dimensional convex optimization with data collected from its local neighborhood. The local estimates are then combined into a global estimate without iterative message-passing. We provide an asymptotic analysis of the proposed estimator, deriving in particular its rate of convergence. Numerical experiments validate the rate of convergence and demonstrate performance equivalent to the centralized maximum likelihood estimator.
Keywords :
estimation theory; graph theory; asymptotic analysis; centralized maximum likelihood estimator; distributed data collection; distributed data computation; distributed estimation; distributed parameter estimation; graphical model parameters; marginal inference; marginal likelihood; Convergence; Covariance matrices; Graphical models; Inference algorithms; Maximum likelihood estimation; Parameter estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2013 IEEE 5th International Workshop on
Conference_Location :
St. Martin
Print_ISBN :
978-1-4673-3144-9
Type :
conf
DOI :
10.1109/CAMSAP.2013.6714010
Filename :
6714010
Link To Document :
بازگشت