Title :
Scaling Astroinformatics: Python + Automatic Parallelization
Author :
Muller, Sven Christian ; Alonso, Gustavo ; Csillaghy, Andre
Author_Institution :
ETH Zurich, Zürich, Switzerland
Abstract :
Pydron, a system that bridges the gap between interactive data analysis and scalable computing, enables astronomers to process large datasets with Python without the complexities of managing parallel processing code.
Keywords :
astronomy computing; data analysis; high level languages; interactive systems; parallel processing; Pydron; Python; astroinformatics; automatic parallelization; interactive data analysis; scalable computing; Astronomy; Big data; Cloud computing; Cluster approximation; Extraterrestrial measurements; Informatics; Information analysis; Multicore processing; Parallel processing; astroinformatics; big data; cloud computing; cluster computing; data analysis; scientific data processing;
DOI :
10.1109/MC.2014.262