• DocumentCode
    695833
  • Title

    Maximum a posteriori vs maximum probability recursive sparse estimation

  • Author

    Blackhall, Lachlan ; Rotkowitz, Michael

  • Author_Institution
    Res. Sch. of Inf. Sci. & Eng., Australian Nat. Univ., Canberra, ACT, Australia
  • fYear
    2009
  • fDate
    23-26 Aug. 2009
  • Firstpage
    472
  • Lastpage
    477
  • Abstract
    Recursive sparse parameter estimates obtained using the author´s recent maximum a posteriori (MAP) approach, where the sparse parameter estimates are determined as the a posteriori mode of a Gaussian sum filter, are compared with a new maximum probability (MP) methodology, where the sparse parameter estimates are determined as the component of a Gaussian sum filter with the highest a posteriori weighting. We show how the performance of the MP estimator approach to sparse parameter estimates, in both sparsity and mean square error senses, depends on the parameters that characterize each multivariate Gaussian in the Gaussian sum filter. Through this work we also provide additional performance analysis for the MP estimator and suggest possible areas of future work that will further improve its performance.
  • Keywords
    Gaussian processes; filtering theory; maximum likelihood estimation; mean square error methods; recursive estimation; Gaussian sum filter; MAP estimator; MP estimator; a posteriori mode; a posteriori weighting; maximum a posteriori recursive sparse estimation; maximum probability recursive sparse estimation; mean square error; multivariate Gaussian; recursive sparse parameter estimation; Bismuth; Estimation; Gaussian distribution; Noise; Parameter estimation; Standards; Vectors;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Control Conference (ECC), 2009 European
  • Conference_Location
    Budapest
  • Print_ISBN
    978-3-9524173-9-3
  • Type

    conf

  • Filename
    7074447