DocumentCode
695833
Title
Maximum a posteriori vs maximum probability recursive sparse estimation
Author
Blackhall, Lachlan ; Rotkowitz, Michael
Author_Institution
Res. Sch. of Inf. Sci. & Eng., Australian Nat. Univ., Canberra, ACT, Australia
fYear
2009
fDate
23-26 Aug. 2009
Firstpage
472
Lastpage
477
Abstract
Recursive sparse parameter estimates obtained using the author´s recent maximum a posteriori (MAP) approach, where the sparse parameter estimates are determined as the a posteriori mode of a Gaussian sum filter, are compared with a new maximum probability (MP) methodology, where the sparse parameter estimates are determined as the component of a Gaussian sum filter with the highest a posteriori weighting. We show how the performance of the MP estimator approach to sparse parameter estimates, in both sparsity and mean square error senses, depends on the parameters that characterize each multivariate Gaussian in the Gaussian sum filter. Through this work we also provide additional performance analysis for the MP estimator and suggest possible areas of future work that will further improve its performance.
Keywords
Gaussian processes; filtering theory; maximum likelihood estimation; mean square error methods; recursive estimation; Gaussian sum filter; MAP estimator; MP estimator; a posteriori mode; a posteriori weighting; maximum a posteriori recursive sparse estimation; maximum probability recursive sparse estimation; mean square error; multivariate Gaussian; recursive sparse parameter estimation; Bismuth; Estimation; Gaussian distribution; Noise; Parameter estimation; Standards; Vectors;
fLanguage
English
Publisher
ieee
Conference_Titel
Control Conference (ECC), 2009 European
Conference_Location
Budapest
Print_ISBN
978-3-9524173-9-3
Type
conf
Filename
7074447
Link To Document