• DocumentCode
    696113
  • Title

    Adaptive neuro-NMPC control of redundant robotic manipulators for path tracking and obstacle avoidance

  • Author

    Jasour, A.M.Z. ; Farrokhi, M.

  • Author_Institution
    Dept. of Electr. Eng., Iran Univ. of Sci. & Technol., Tehran, Iran
  • fYear
    2009
  • fDate
    23-26 Aug. 2009
  • Firstpage
    2181
  • Lastpage
    2186
  • Abstract
    This paper presents a nonlinear model predictive control (NMPC) method with adaptive neuro-modelling for redundant robotic manipulators. Using the NMPC, the end-effector of the robot tracks a predefined geometry path in the Cartesian space without colliding with obstacles in the workspace and at the same time avoiding singular configurations of the robot. Furthermore, using the neural network for the model prediction, no knowledge about system parameters is necessary; hence, yielding robustness against changes in parameters of the system. Numerical results for a 4DOF redundant spatial manipulator actuated by DC servomotors shows effectiveness of the proposed method.
  • Keywords
    DC motors; adaptive control; collision avoidance; neurocontrollers; nonlinear control systems; predictive control; redundant manipulators; robust control; servomotors; Cartesian space; DC servomotors; adaptive neuroNMPC control; adaptive neuromodelling; model prediction; neural network; nonlinear model predictive control method; obstacle avoidance; path tracking; predefined geometry path tracks; redundant robotic manipulators; redundant spatial manipulator; robustness; singular configurations; system parameters; DH-HEMTs; Europe; High definition video; Manipulators;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Control Conference (ECC), 2009 European
  • Conference_Location
    Budapest
  • Print_ISBN
    978-3-9524173-9-3
  • Type

    conf

  • Filename
    7074728