DocumentCode :
697878
Title :
Parsimonious variational-Bayes mixture aggregation with a Poisson prior
Author :
Bruneau, Pierrick ; Gelgon, Marc ; Picarougne, Fabien
Author_Institution :
LINA, Nantes Univ., La Chantrerie, France
fYear :
2009
fDate :
24-28 Aug. 2009
Firstpage :
1499
Lastpage :
1503
Abstract :
This paper addresses merging of Gaussian mixture models, which answers growing needs in e.g. distributed pattern recognition. We propose a probabilistic model over the parameter set, that extends the weighted bipartite matching problem to our mixture aggregation task. We then derive a variational-Bayes associated estimation algorithm, that ensure low cost and parsimony, as confirmed by experimental results.
Keywords :
Bayes methods; Gaussian processes; Poisson distribution; mixture models; pattern clustering; string matching; Gaussian mixture model; Poisson prior; bipartite matching problem; data clustering; distributed pattern recognition; parsimonious variational-Bayes mixture aggregation; probabilistic model; Abstracts; Context;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing Conference, 2009 17th European
Conference_Location :
Glasgow
Print_ISBN :
978-161-7388-76-7
Type :
conf
Filename :
7077450
Link To Document :
بازگشت