• DocumentCode
    698681
  • Title

    Blind separation of sparse sources using variational EM

  • Author

    Cemgil, Ali Taylan ; Fevotte, Cedric ; Godsill, Simon J.

  • Author_Institution
    Eng. Dept., Univ. of Cambridge, Cambridge, UK
  • fYear
    2005
  • fDate
    4-8 Sept. 2005
  • Firstpage
    1
  • Lastpage
    4
  • Abstract
    In this paper, we tackle the general linear instantaneous model (possibly underdetermined and noisy) using the assumption of sparsity of the sources on a given dictionary. We model the sparsity of expansion coefficients with a Student t prior. The conjugate-exponential characterisation of the t distribution as an infinite mixture of scaled Gaussians enables us to derive an efficient variational expectation maximisation algorithm (V-EM). The resulting deterministic algorithm has superior properties in terms of computation time and achieves a separation performance comparable in quality to alternative methods based on Markov Chain Monte Carlo (MCMC).
  • Keywords
    Markov processes; Monte Carlo methods; blind source separation; expectation-maximisation algorithm; Markov Chain Monte Carlo method; V-EM; blind separation; conjugate-exponential characterisation; deterministic algorithm; efficient variational expectation maximisation algorithm; general linear instantaneous model; Approximation methods; Bayes methods; Blind source separation; Noise; Noise measurement; Transforms;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Signal Processing Conference, 2005 13th European
  • Conference_Location
    Antalya
  • Print_ISBN
    978-160-4238-21-1
  • Type

    conf

  • Filename
    7078273