• DocumentCode
    699174
  • Title

    Boosting: From data to hardware using automatic implementation tool

  • Author

    Miteran, J. ; Matas, J. ; Dubois, J. ; Bourennane, E.

  • Author_Institution
    Le2i - FRE, Univ. de Bourgogne, Dijon, France
  • fYear
    2004
  • fDate
    6-10 Sept. 2004
  • Firstpage
    1333
  • Lastpage
    1336
  • Abstract
    We propose a method of automatic hardware implementation of a decision rule based on the Adaboost algorithm. We review the principles of the classification method and we evaluate its hardware implementation cost in term of FPGA´s slice, using different weak classifiers based on the general concept of hyperrectangle. We show how to combine the weak classifiers in order to find an efficient trade-off between classification performances and hardware implementation cost. We present results obtained using examples coming from UCI databases.
  • Keywords
    field programmable gate arrays; image segmentation; learning (artificial intelligence); Adaboost algorithm; FPGA; UCI; automatic hardware implementation; automatic implementation tool; boosting; decision rule; hyperrectangle; Abstracts; Adders; Boosting; Databases; Standards; Support vector machines;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Signal Processing Conference, 2004 12th European
  • Conference_Location
    Vienna
  • Print_ISBN
    978-320-0001-65-7
  • Type

    conf

  • Filename
    7079704