DocumentCode
70356
Title
Optimal Interval Clustering: Application to Bregman Clustering and Statistical Mixture Learning
Author
Nielsen, Frank ; Nock, Richard
Author_Institution
Sony Comput. Sci. Labs., Inc., Tokyo, Japan
Volume
21
Issue
10
fYear
2014
fDate
Oct. 2014
Firstpage
1289
Lastpage
1292
Abstract
We present a generic dynamic programming method to compute the optimal clustering of n scalar elements into k pairwise disjoint intervals. This case includes 1D Euclidean k-means, k-medoids, k-medians, k-centers, etc. We extend the method to incorporate cluster size constraints and show how to choose the appropriate k by model selection. Finally, we illustrate and refine the method on two case studies: Bregman clustering and statistical mixture learning maximizing the complete likelihood.
Keywords
dynamic programming; learning (artificial intelligence); pattern clustering; statistical analysis; 1D Euclidean k-means; Bregman clustering; cluster size constraints; complete likelihood maximization; generic dynamic programming method; k-centers; k-medians; k-medoids; model selection; optimal interval clustering; pairwise disjoint intervals; statistical mixture learning; Dynamic programming; Equations; Indexes; Linear programming; Mathematical model; Memory management; Table lookup; $k$ -means; Bregman divergences; clustering; dynamic programming; exponential families; statistical mixtures;
fLanguage
English
Journal_Title
Signal Processing Letters, IEEE
Publisher
ieee
ISSN
1070-9908
Type
jour
DOI
10.1109/LSP.2014.2333001
Filename
6844058
Link To Document