• DocumentCode
    70356
  • Title

    Optimal Interval Clustering: Application to Bregman Clustering and Statistical Mixture Learning

  • Author

    Nielsen, Frank ; Nock, Richard

  • Author_Institution
    Sony Comput. Sci. Labs., Inc., Tokyo, Japan
  • Volume
    21
  • Issue
    10
  • fYear
    2014
  • fDate
    Oct. 2014
  • Firstpage
    1289
  • Lastpage
    1292
  • Abstract
    We present a generic dynamic programming method to compute the optimal clustering of n scalar elements into k pairwise disjoint intervals. This case includes 1D Euclidean k-means, k-medoids, k-medians, k-centers, etc. We extend the method to incorporate cluster size constraints and show how to choose the appropriate k by model selection. Finally, we illustrate and refine the method on two case studies: Bregman clustering and statistical mixture learning maximizing the complete likelihood.
  • Keywords
    dynamic programming; learning (artificial intelligence); pattern clustering; statistical analysis; 1D Euclidean k-means; Bregman clustering; cluster size constraints; complete likelihood maximization; generic dynamic programming method; k-centers; k-medians; k-medoids; model selection; optimal interval clustering; pairwise disjoint intervals; statistical mixture learning; Dynamic programming; Equations; Indexes; Linear programming; Mathematical model; Memory management; Table lookup; $k$ -means; Bregman divergences; clustering; dynamic programming; exponential families; statistical mixtures;
  • fLanguage
    English
  • Journal_Title
    Signal Processing Letters, IEEE
  • Publisher
    ieee
  • ISSN
    1070-9908
  • Type

    jour

  • DOI
    10.1109/LSP.2014.2333001
  • Filename
    6844058