• DocumentCode
    70386
  • Title

    A Construction of Quantum LDPC Codes From Cayley Graphs

  • Author

    Couvreur, Alain ; Delfosse, Nicolas ; Zemor, Gilles

  • Author_Institution
    UMR 7161-Ecole Polytech., INRIA Saclay Ile-de-France, Palaiseau, France
  • Volume
    59
  • Issue
    9
  • fYear
    2013
  • fDate
    Sept. 2013
  • Firstpage
    6087
  • Lastpage
    6098
  • Abstract
    We study a construction of quantum LDPC codes proposed by MacKay, Mitchison, and Shokrollahi. It is based on the Cayley graph of BBF2n together with a set of generators regarded as the columns of the parity-check matrix of a classical code. We give a general lower bound on the minimum distance of the quantum code in O(dn2) where d is the minimum distance of the classical code. This bound is logarithmic in the blocklength 2n of the quantum code. When the classical code is the [n,1,n] repetition code, we are able to compute the exact parameters of the associated quantum code which are [[2n, 2[(n+1)/2], 2[(n-1)/2]]].
  • Keywords
    graph theory; graphs; matrix algebra; parity check codes; quantum theory; Cayley graphs; blocklength; parity check matrix; quantum LDPC codes; Algebra; Cascading style sheets; Generators; Parity check codes; Quantum computing; Quantum mechanics; Sparse matrices; Cayley graphs; LDPC codes; graph covers; quantum codes; sparse matrices;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2013.2261116
  • Filename
    6517925