• DocumentCode
    706489
  • Title

    Identification of multivariable errors-in-variables models

  • Author

    Castaldi, P. ; Diversi, R. ; Guidorzi, R. ; Soverini, U.

  • Author_Institution
    Dipt. di Elettron., Inf. e Sist., Univ. di Bologna, Bologna, Italy
  • fYear
    1999
  • fDate
    Aug. 31 1999-Sept. 3 1999
  • Firstpage
    969
  • Lastpage
    974
  • Abstract
    The paper deals with a new identification approach, based on a prediction error method, for multivariable errors-in-variables models (EIV). Starting from the ARMAX decomposition of MIMO EIV processes and congruence conditions between noisy sequences and the constraints of EIV representations, the simultaneous estimate of the model parameters and of the noise covariance matrices is obtained. Numerical simulations are included to illustrate the effectiveness of the proposed algorithm.
  • Keywords
    MIMO systems; autoregressive moving average processes; parameter estimation; ARMAX decomposition; MIMO EIV processes; congruence conditions; multivariable errors-in-variables model identification; noise covariance matrices; noisy sequences; prediction error method; Computational modeling; Covariance matrices; MIMO; Noise; Noise measurement; Numerical models; Predictive models; System Identification; errors-in-variables models; multivariable models; optimal ARMAX predictor;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Control Conference (ECC), 1999 European
  • Conference_Location
    Karlsruhe
  • Print_ISBN
    978-3-9524173-5-5
  • Type

    conf

  • Filename
    7099433