• DocumentCode
    706675
  • Title

    Nonparametric estimation and filtering of uncertain nonlinear processes application to a nitrification process

  • Author

    Hilgert, N. ; Vila, J.P.

  • Author_Institution
    INRA Lab. de Biometrie, Montpellier, France
  • fYear
    1999
  • fDate
    Aug. 31 1999-Sept. 3 1999
  • Firstpage
    2044
  • Lastpage
    2047
  • Abstract
    The aim of this paper is to present some contributions of a nonparametric statistical approach to the identification of uncertain dynamical systems. This method is particularly well adapted to biotechnological processes. We developed a semi-parametric filtering algorithm, able to estimate both non measured state variables and functional kinetic parameters without any a priori assumption on the modelling of these parameters. This new technique is described using the example of a nitrification process.
  • Keywords
    Kalman filters; biotechnology; statistical analysis; biotechnological processes; functional kinetic parameters; nitrification process; nonparametric estimation; nonparametric filtering; nonparametric statistical approach; semiparametric filtering algorithm; state variables; uncertain dynamical systems; uncertain nonlinear processes; Adaptation models; Biological system modeling; Estimation; Kalman filters; Kernel; Kinetic theory; Niobium; Biotechnological estimates; Filtering; Kalman filter; Kernel estimates; Nonparametric estimation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Control Conference (ECC), 1999 European
  • Conference_Location
    Karlsruhe
  • Print_ISBN
    978-3-9524173-5-5
  • Type

    conf

  • Filename
    7099619