• DocumentCode
    712896
  • Title

    An efficient hardware implementation of few lightweight block cipher

  • Author

    Nemati, Ali ; Feizi, Soheil ; Ahmadi, Arash ; Haghiri, Saeed ; Ahmadi, Majid ; Alirezaee, Shahpour

  • Author_Institution
    Dept. of Electr. Eng., Islamic Azad Univ. of Sci. & Res., Kermanshah, Iran
  • fYear
    2015
  • fDate
    3-5 March 2015
  • Firstpage
    273
  • Lastpage
    278
  • Abstract
    Radio-frequency identification (RFID) are becoming a part of our everyday life with a wide range of applications such as labeling products and supply chain management and etc. These smart and tiny devices have extremely constrained resources in terms of area, computational abilities, memory, and power. At the same time, security and privacy issues remain as an important problem, thus with the large deployment of low resource devices, increasing need to provide security and privacy among such devices, has arisen. Resource-efficient cryptographic incipient become basic for realizing both security and efficiency in constrained environments and embedded systems like RFID tags and sensor nodes. Among those primitives, lightweight block cipher plays a significant role as a building block for security systems. In 2014 Manoj Kumar et al proposed a new Lightweight block cipher named as FeW, which are suitable for extremely constrained environments and embedded systems. In this paper, we simulate and synthesize the FeW block cipher. Implementation results of the FeW cryptography algorithm on a FPGA are presented. The design target is efficiency of area and cost.
  • Keywords
    cryptography; field programmable gate arrays; radiofrequency identification; FPGA; FeW cryptography algorithm; FeW lightweight block cipher; RFID; hardware implementation; radio-frequency identification; resource-efficient cryptographic incipient; security system; sensor node; Algorithm design and analysis; Ciphers; Encryption; Hardware; Schedules; Block Cipher; FeW Algorithm; Feistel structure; Field Programmable Gate Array (FPGA); High Level Synthesis;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Artificial Intelligence and Signal Processing (AISP), 2015 International Symposium on
  • Conference_Location
    Mashhad
  • Print_ISBN
    978-1-4799-8817-4
  • Type

    conf

  • DOI
    10.1109/AISP.2015.7123493
  • Filename
    7123493