• DocumentCode
    715455
  • Title

    File updates under random/arbitrary insertions and deletions

  • Author

    Qiwen Wang ; Cadambe, Viveck ; Jaggi, Sidharth ; Schwartz, Moshe ; Medard, Muriel

  • Author_Institution
    Dept. of Inf. Eng., Chinese Univ. of Hong Kong, Hong Kong, China
  • fYear
    2015
  • fDate
    April 26 2015-May 1 2015
  • Firstpage
    1
  • Lastpage
    5
  • Abstract
    A client/encoder edits a file, as modeled by an insertion-deletion (InDel) process. An old copy of the file is stored remotely at a data-centre/decoder, and is also available to the client. We consider the problem of throughput- and computationally-efficient communication from the client to the data-centre, to enable the server to update its copy to the newly edited file. We study two models for the source files/edit patterns: the random pre-edit sequence left-to-right random InDel (RPES-LtRRID) process, and the arbitrary pre-edit sequence arbitrary InDel (APES-AID) process. In both models, we consider the regime in which the number of insertions/deletions is a small (but constant) fraction of the original file. For both models we prove information-theoretic lower bounds on the best possible compression rates that enable file updates. Conversely, our compression algorithms use dynamic programming (DP) and entropy coding, and achieve rates that are approximately optimal.
  • Keywords
    file organisation; APES-AID process; DP; RPES-LtRRID process; client/encoder; compression algorithms; compression rates; data-centre/decoder; dynamic programming; edited file; entropy coding; file updates; information-theoretic lower bounds; insertion-deletion process; pre-edit sequence arbitrary InDel process; random/arbitrary insertions; source files/edit patterns; Computational modeling; Decoding; Entropy; Markov processes; Radio access networks; Synchronization;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information Theory Workshop (ITW), 2015 IEEE
  • Conference_Location
    Jerusalem
  • Print_ISBN
    978-1-4799-5524-4
  • Type

    conf

  • DOI
    10.1109/ITW.2015.7133118
  • Filename
    7133118