DocumentCode :
717153
Title :
A platform for predicting real-time service-level metrics from device statistics
Author :
Yanggratoke, Rerngvit ; Ahmed, Jawwad ; Ardelius, John ; Flinta, Christofer ; Johnsson, Andreas ; Gillblad, Daniel ; Stadler, Rolf
Author_Institution :
ACCESS Linnaeus Center, KTH R. Inst. of Technol., Stockholm, Sweden
fYear :
2015
fDate :
11-15 May 2015
Firstpage :
1141
Lastpage :
1142
Abstract :
Predicting performance metrics for cloud services is critical for real-time service assurance. We demonstrate a platform for estimating real-time service-level metrics. Statistical learning methods on device statistics are used to predict metrics for services running on these devices.
Keywords :
cloud computing; learning (artificial intelligence); performance evaluation; statistical analysis; cloud services; device statistics; performance metrics prediction; real-time service assurance; real-time service-level metrics prediction; statistical learning methods; Kernel; Load modeling; Measurement; Real-time systems; Servers; Statistical learning; Streaming media;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Integrated Network Management (IM), 2015 IFIP/IEEE International Symposium on
Conference_Location :
Ottawa, ON
Type :
conf
DOI :
10.1109/INM.2015.7140449
Filename :
7140449
Link To Document :
بازگشت