• DocumentCode
    726307
  • Title

    Information leakage chaff: Feeding red herrings to side channel attackers

  • Author

    Agosta, Giovanni ; Barenghi, Alessandro ; Pelosi, Gerardo ; Scandale, Michele

  • Author_Institution
    Dipt. di Elettron., Inf. e Bioingegneria - DEIB, Politec. di Milano, Milan, Italy
  • fYear
    2015
  • fDate
    8-12 June 2015
  • Firstpage
    1
  • Lastpage
    6
  • Abstract
    A prominent threat to embedded systems security is represented by side-channel attacks: they have proven effective in breaching confidentiality, violating trust guarantees and IP protection schemes. State-of-the-art countermeasures reduce the leaked information to prevent the attacker from retrieving the secret key of the cipher. We propose an alternate defense strategy augmenting the regular information leakage with false targets, quite like chaff countermeasures against radars, hiding the correct secret key among a volley of chaff targets. This in turn feeds the attacker with a large amount of invalid keys, which can be used to trigger an alarm whenever the attack attempts a content forgery using them, thus providing a reactive security measure. We realized a LLVM compiler pass able to automatically apply the proposed countermeasure to software implementations of block ciphers. We provide effectiveness and efficiency results on an AES implementation running on an ARM Cortex-M4 showing performance overheads comparable with state-of-the-art countermeasures.
  • Keywords
    cryptography; program compilers; trusted computing; AES implementation; ARM Cortex-M4; IP protection schemes; LLVM compiler; confidentiality breaching; content forgery; defense strategy; embedded system security; information leakage chaff; reactive security measure; side channel attackers; software implementations; trust guarantees; Ciphers; Correlation; Optimization; Software; Switches; Embedded Security; Side Channel Attacks; Software Countermeasures;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Design Automation Conference (DAC), 2015 52nd ACM/EDAC/IEEE
  • Conference_Location
    San Francisco, CA
  • Type

    conf

  • DOI
    10.1145/2744769.2744859
  • Filename
    7167217