DocumentCode :
727243
Title :
On unbiased identification of autoregressive signals with noisy measurements
Author :
Youshen Xia ; Wei Xing Zheng
Author_Institution :
Coll. of Math. & Comput. Sci., Fuzhou Univ., Fuzhou, China
fYear :
2015
fDate :
24-27 May 2015
Firstpage :
2157
Lastpage :
2160
Abstract :
The problem of identification of autoregressive (AR) signals with noisy measurements is considered. A new algorithm is proposed to estimate the AR parameters. To cope with the effect of the measurement noise that causes a bias in the least-squares estimate of the AR parameters, an efficient procedure is developed for estimating the measurement noise variance. The proposed identification algorithm is implemented via the Newton iterative scheme and is able to produce better parameter estimates. A numerical example is presented to show the efficiency of the new identification algorithm for noisy AR signals.
Keywords :
Newton method; autoregressive processes; signal denoising; Newton iterative scheme; least-square AR parameter estimation; measurement noise variance estimation; noisy measurements; unbiased autoregressive signal identification; Estimation; Measurement uncertainty; Noise; Noise measurement; Parameter estimation; Signal processing algorithms;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuits and Systems (ISCAS), 2015 IEEE International Symposium on
Conference_Location :
Lisbon
Type :
conf
DOI :
10.1109/ISCAS.2015.7169107
Filename :
7169107
Link To Document :
بازگشت