• DocumentCode
    728006
  • Title

    Security in stochastic control systems: Fundamental limitations and performance bounds

  • Author

    Cheng-Zong Bai ; Pasqualetti, Fabio ; Gupta, Vijay

  • Author_Institution
    Dept. of Electr. Eng., Univ. of Notre Dame, Notre Dame, IN, USA
  • fYear
    2015
  • fDate
    1-3 July 2015
  • Firstpage
    195
  • Lastpage
    200
  • Abstract
    This work proposes a novel metric to characterize the resilience of stochastic cyber-physical systems to attacks and faults. We consider a single-input single-output plant regulated by a control law based on the estimate of a Kalman filter. We allow for the presence of an attacker able to hijack and replace the control signal. The objective of the attacker is to maximize the estimation error of the Kalman filter - which in turn quantifies the degradation of the control performance - by tampering with the control input, while remaining undetected. We introduce a notion of ε-stealthiness to quantify the difficulty to detect an attack when an arbitrary detection algorithm is implemented by the controller. For a desired value of ε-stealthiness, we quantify the largest estimation error that an attacker can induce, and we analytically characterize an optimal attack strategy. Because our bounds are independent of the detection mechanism implemented by the controller, our information-theoretic analysis characterizes fundamental security limitations of stochastic cyber-physical systems.
  • Keywords
    Kalman filters; stochastic systems; ε-stealthiness notion; Kalman filter estimation; arbitrary detection algorithm; control law; control performance; estimation error; optimal attack strategy; single-input single-output plant; stochastic control systems; stochastic cyber-physical systems; Cyber-physical systems; Degradation; Detectors; Estimation error; Kalman filters; Random sequences; Upper bound;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    American Control Conference (ACC), 2015
  • Conference_Location
    Chicago, IL
  • Print_ISBN
    978-1-4799-8685-9
  • Type

    conf

  • DOI
    10.1109/ACC.2015.7170734
  • Filename
    7170734