• DocumentCode
    73628
  • Title

    Toward Detection and Localization of Instruments in Minimally Invasive Surgery

  • Author

    Allan, M. ; Ourselin, Sebastien ; Thompson, Susan ; Hawkes, D.J. ; Kelly, Jonathan ; Stoyanov, D.

  • Author_Institution
    Dept. of Comput. Sci., Univ. Coll. London, London, UK
  • Volume
    60
  • Issue
    4
  • fYear
    2013
  • fDate
    Apr-13
  • Firstpage
    1050
  • Lastpage
    1058
  • Abstract
    Methods for detecting and localizing surgical instruments in laparoscopic images are an important element of advanced robotic and computer-assisted interventions. Robotic joint encoders and sensors integrated or mounted on the instrument can provide information about the tool´s position, but this often has inaccuracy when transferred to the surgeon´s point of view. Vision sensors are currently a promising approach for determining the position of instruments in the coordinate frame of the surgical camera. In this study, we propose a vision algorithm for localizing the instrument´s pose in 3-D leaving only rotation in the axis of the tool´s shaft as an ambiguity. We propose a probabilistic supervised classification method to detect pixels in laparoscopic images that belong to surgical tools. We then use the classifier output to initialize an energy minimization algorithm for estimating the pose of a prior 3-D model of the instrument within a level set framework. We show that the proposed method is robust against noise using simulated data and we perform quantitative validation of the algorithm compared to ground truth obtained using an optical tracker. Finally, we demonstrate the practical application of the technique on in vivo data from minimally invasive surgery with traditional laparoscopic and robotic instruments.
  • Keywords
    image sensors; medical robotics; surgery; advanced robotic intervention; computer assisted intervention; energy minimization algorithm; laparoscopic images; minimally invasive surgery; robotic joint encoders; surgical camera; surgical instrument detection; surgical instrument localization; vision sensors; Image color analysis; Instruments; Noise; Robots; Shape; Surgery; Vectors; Instrument detection and localization; robotic assisted surgery; surgical vision; Algorithms; Bayes Theorem; Computer Simulation; Databases, Factual; Humans; Image Processing, Computer-Assisted; Reproducibility of Results; Robotics; Surgical Instruments; Surgical Procedures, Minimally Invasive;
  • fLanguage
    English
  • Journal_Title
    Biomedical Engineering, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9294
  • Type

    jour

  • DOI
    10.1109/TBME.2012.2229278
  • Filename
    6359786