• DocumentCode
    736362
  • Title

    Visualization of big data

  • Author

    Kung, Sun-Yuan

  • Author_Institution
    Department of Electrical Engineering, Princeton University, NJ, USA
  • fYear
    2015
  • fDate
    6-8 July 2015
  • Firstpage
    447
  • Lastpage
    448
  • Abstract
    Big data has many divergent types of sources, from physical (sensor/IoT) to social and cyber (web) types, rendering it messy, imprecise, and incomplete. Due to its quantitative (volume and velocity) and qualitative (variety) challenges, big data to the users resembles something like “the elephant to the blind men”. It is imperative to enact a major paradigm shift in data mining and learning tools so that information from diversified sources must be integrated together to unravel information hidden in the massive and messy big data, so that, metaphorically speaking, it would let the blind men “see” the elephant. This talk will address yet another vital “V”-paradigm: “Visualization”. Visualization tools are meant to supplement (instead of replace) the domain expertise (e.g. a cardiologist) and provide a big picture to help users formulate critical questions and subsequently postulate heuristic and insightful answers.
  • Keywords
    Big data; complexity; data mining; dimensional reduction; learning; projection; tools; visualization;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Cognitive Informatics & Cognitive Computing (ICCI*CC), 2015 IEEE 14th International Conference on
  • Conference_Location
    Beijing, China
  • Print_ISBN
    978-1-4673-7289-3
  • Type

    conf

  • DOI
    10.1109/ICCI-CC.2015.7259428
  • Filename
    7259428