DocumentCode
738468
Title
An Ensemble Approach to Image Matching Using Contextual Features
Author
Morago, Brittany ; Giang Bui ; Ye Duan
Author_Institution
Univ. of Missouri-Columbia, West Columbia, MO, USA
Volume
24
Issue
11
fYear
2015
Firstpage
4474
Lastpage
4487
Abstract
We propose a contextual framework for 2D image matching and registration using an ensemble feature. Our system is beneficial for registering image pairs that have captured the same scene but have large visual discrepancies between them. It is common to encounter challenging visual variations in image sets with artistic rendering differences or in those collected over a period of time during which the lighting conditions and scene content may have changed. Differences between images may also be caused using a variety of cameras with different sensors, focal lengths, and exposure values. Local feature matching techniques cannot always handle these difficulties, so we have developed an approach that builds on traditional methods to consider linear and histogram of gradient information over a larger, more stable region. We also present a technique for using linear features to estimate corner keypoints, or pseudo corners, that can be used for matching. Our pipeline follows this unique matching stage with homography refinement methods using edge and gradient information. Our goal is to increase the size of accurate keypoint match sets and align photographs containing a combination of man-made and natural imagery. We show that incorporating contextual information can provide complimentary information for scale invariant feature transform and boost local keypoint matching performance, as well as be used to describe corner feature points.
Keywords
feature extraction; gradient methods; image matching; image registration; 2D image matching; contextual features; corner keypoints; edge information; gradient information; homography refinement methods; image pairs; image registration; linear features; pseudo corners; scale invariant feature transform; Detectors; Feature extraction; Histograms; Image segmentation; Lighting; Pipelines; Visualization; 2D registration; Keypoint matching; contextual features; ensemble features; histogram of gradients; linear features;
fLanguage
English
Journal_Title
Image Processing, IEEE Transactions on
Publisher
ieee
ISSN
1057-7149
Type
jour
DOI
10.1109/TIP.2015.2456498
Filename
7159092
Link To Document