• DocumentCode
    739158
  • Title

    Two-stage parameter estimation algorithms for Box–Jenkins systems

  • Author

    Feng Ding ; Honghong Duan

  • Author_Institution
    Key Lab. of Adv. Process Control for Light Ind. (Minist. of Educ.), Jiangnan Univ., Wuxi, China
  • Volume
    7
  • Issue
    8
  • fYear
    2013
  • fDate
    10/1/2013 12:00:00 AM
  • Firstpage
    646
  • Lastpage
    654
  • Abstract
    A two-stage recursive least-squares identification method and a two-stage multi-innovation stochastic gradient method are derived for Box-Jenkins (BJ) systems. The key is to decompose a BJ system into two subsystems, one containing the parameters of the system model and the other containing the parameters of the noise model, and then to estimate the parameters of the system model and the noise model, respectively. The simulation examples indicate that the proposed algorithms can generate highly accurate parameter estimates and require small computational burden.
  • Keywords
    gradient methods; least squares approximations; parameter estimation; recursive estimation; signal processing; stochastic processes; BJ system; Box-Jenkins systems; noise model parameter estimation; system model parameter estimation; two-stage multiinnovation stochastic gradient method; two-stage parameter estimation algorithms; two-stage recursive least-square identification method;
  • fLanguage
    English
  • Journal_Title
    Signal Processing, IET
  • Publisher
    iet
  • ISSN
    1751-9675
  • Type

    jour

  • DOI
    10.1049/iet-spr.2012.0183
  • Filename
    6611355