• DocumentCode
    747508
  • Title

    An upper bound for Weil exponential sums over Galois rings and applications

  • Author

    Kumar, P.V. ; Helleseth, Tor ; Calderbank, A.R.

  • Author_Institution
    Commun. Sci. Inst., Univ. of Southern California, Los Angeles, CA, USA
  • Volume
    41
  • Issue
    2
  • fYear
    1995
  • fDate
    3/1/1995 12:00:00 AM
  • Firstpage
    456
  • Lastpage
    468
  • Abstract
    We present an analog of the well-known Weil-Carlitz-Uchiyama (1948, 1957) upper bound for exponential sums over finite fields for exponential sums over Galois rings. Some examples are given where the bound is tight. The bound has immediate application to the design of large families of phase-shift-keying sequences having low correlation and an alphabet of size pe. p, prime, e⩾2. Some new constructions of eight-phase sequences are provided
  • Keywords
    Galois fields; correlation theory; encoding; phase shift keying; sequences; Galois rings; Weil bound; Weil exponential sums; alphabet size; coding; eight-phase sequences; exponential sums; low correlation; phase-shift-keying sequences; upper bound; Additives; Codes; Communication systems; Councils; Galois fields; Informatics; Information theory; Phase shift keying; Polynomials; Upper bound;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/18.370147
  • Filename
    370147