DocumentCode :
747656
Title :
A Selective Feature Information Approach for Iris Image-Quality Measure
Author :
Belcher, Craig ; Du, Yingzi
Author_Institution :
Dept. of Electr. & Comput. Eng., Indiana Univ.-Purdue Univ., Indianapolis, IN
Volume :
3
Issue :
3
fYear :
2008
Firstpage :
572
Lastpage :
577
Abstract :
Poor quality images can significantly affect the accuracy of iris-recognition systems because they do not have enough feature information. However, existing quality measures have focused on parameters or factors other than feature information. The quality of feature available for measure is a combination of the distinctiveness of the iris region and the amount of iris region available. Some irises may only have a small area of changing patterns. Due to this, the proposed approach automatically selects the portions of the iris with the most distinguishable changing patterns to measure the feature information. The combination of occlusion and dilation determines the amount of iris region available and is considered in the proposed quality measure. The quality score is the fused result of the feature information score, the occlusion score, and the dilation score. The relationship between the quality score and recognition accuracy is evaluated using 2-D Gabor and 1-D Log-Gabor wavelet approaches and validated using a diverse data set. In addition, the proposed method is compared with the convolution matrix, spectrum energy, and Mexican hat wavelet methods. These three methods represent a variety of approaches for iris-quality measure. The experimental results show that the proposed quality score is highly correlated with the recognition accuracy and is capable of predicting the recognition results.
Keywords :
biometrics (access control); feature extraction; image recognition; wavelet transforms; 1D Log-Gabor wavelet; 2D Gabor wavelet; Mexican hat wavelet methods; convolution matrix; dilation; diverse data set; feature information score; image-quality measure; iris region; iris-recognition systems; occlusion; selective feature information approach; spectrum energy; Biometrics; feature information; iris recognition; iris-quality measure;
fLanguage :
English
Journal_Title :
Information Forensics and Security, IEEE Transactions on
Publisher :
ieee
ISSN :
1556-6013
Type :
jour
DOI :
10.1109/TIFS.2008.924606
Filename :
4540057
Link To Document :
بازگشت