DocumentCode
748508
Title
Sampling signals with finite rate of innovation
Author
Vetterli, Martin ; Marziliano, Pina ; Blu, Thierry
Author_Institution
LCAV, Swiss Fed. Inst. of Technol., Lausanne, Switzerland
Volume
50
Issue
6
fYear
2002
fDate
6/1/2002 12:00:00 AM
Firstpage
1417
Lastpage
1428
Abstract
The authors consider classes of signals that have a finite number of degrees of freedom per unit of time and call this number the rate of innovation. Examples of signals with a finite rate of innovation include streams of Diracs (e.g., the Poisson process), nonuniform splines, and piecewise polynomials. Even though these signals are not bandlimited, we show that they can be sampled uniformly at (or above) the rate of innovation using an appropriate kernel and then be perfectly reconstructed. Thus, we prove sampling theorems for classes of signals and kernels that generalize the classic "bandlimited and sinc kernel" case. In particular, we show how to sample and reconstruct periodic and finite-length streams of Diracs, nonuniform splines, and piecewise polynomials using sinc and Gaussian kernels. For infinite-length signals with finite local rate of innovation, we show local sampling and reconstruction based on spline kernels. The key in all constructions is to identify the innovative part of a signal (e.g., time instants and weights of Diracs) using an annihilating or locator filter: a device well known in spectral analysis and error-correction coding. This leads to standard computational procedures for solving the sampling problem, which we show through experimental results. Applications of these new sampling results can be found in signal processing, communications systems, and biological systems
Keywords
bandlimited signals; error correction codes; filtering theory; polynomials; signal reconstruction; signal sampling; spectral analysis; splines (mathematics); Dirac streams; Poisson process; annihilating filter; bandlimited kernel; bandlimited signal; biological systems; communications systems; error-correction coding; finite innovation rate; finite-length streams; local reconstruction; local sampling; locator filter; nonuniform splines; periodic streams; piecewise polynomials; sampling theorems; signal processing; signal reconstruction; signal sampling; sinc kernel; spectral analysis; spline kernels; Biology computing; Biomedical signal processing; Filters; Kernel; Polynomials; Sampling methods; Signal processing; Signal sampling; Spectral analysis; Technological innovation;
fLanguage
English
Journal_Title
Signal Processing, IEEE Transactions on
Publisher
ieee
ISSN
1053-587X
Type
jour
DOI
10.1109/TSP.2002.1003065
Filename
1003065
Link To Document