• DocumentCode
    749883
  • Title

    Nonlinear Sparse-Graph Codes for Lossy Compression

  • Author

    Gupta, Ankit ; Verdú, Sergio

  • Author_Institution
    Dept. of Electr. Eng., Princeton Univ., Princeton, NJ
  • Volume
    55
  • Issue
    5
  • fYear
    2009
  • fDate
    5/1/2009 12:00:00 AM
  • Firstpage
    1961
  • Lastpage
    1975
  • Abstract
    We propose a scheme for lossy compression of discrete memoryless sources: The compressor is the decoder of a nonlinear channel code, constructed from a sparse graph. We prove asymptotic optimality of the scheme for any separable (letter-by-letter) bounded distortion criterion. We also present a suboptimal compression algorithm, which exhibits near-optimal performance for moderate block lengths.
  • Keywords
    channel coding; decoding; graph theory; nonlinear codes; decoder; discrete memoryless sources; nonlinear channel code; nonlinear sparse-graph codes; sparse graph; suboptimal compression algorithm; Additive noise; Channel capacity; Compression algorithms; Data compression; Error correction codes; Information theory; Linear code; Maximum likelihood decoding; Nonlinear distortion; Parity check codes; Discrete memoryless sources; lossy data compression; rate–distortion theory; source–channel coding duality; sparse-graph codes;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2009.2016040
  • Filename
    4839023