DocumentCode :
751113
Title :
Training cost-sensitive neural networks with methods addressing the class imbalance problem
Author :
Zhou, Zhi-Hua ; Liu, Xu-Ying
Author_Institution :
Nat. Lab. for Novel Software Technol., Nanjing Univ., China
Volume :
18
Issue :
1
fYear :
2006
Firstpage :
63
Lastpage :
77
Abstract :
This paper studies empirically the effect of sampling and threshold-moving in training cost-sensitive neural networks. Both oversampling and undersampling are considered. These techniques modify the distribution of the training data such that the costs of the examples are conveyed explicitly by the appearances of the examples. Threshold-moving tries to move the output threshold toward inexpensive classes such that examples with higher costs become harder to be misclassified. Moreover, hard-ensemble and soft-ensemble, i.e., the combination of above techniques via hard or soft voting schemes, are also tested. Twenty-one UCl data sets with three types of cost matrices and a real-world cost-sensitive data set are used in the empirical study. The results suggest that cost-sensitive learning with multiclass tasks is more difficult than with two-class tasks, and a higher degree of class imbalance may increase the difficulty. It also reveals that almost all the techniques are effective on two-class tasks, while most are ineffective and even may cause negative effect on multiclass tasks. Overall, threshold-moving and soft-ensemble are relatively good choices in training cost-sensitive neural networks. The empirical study also suggests that some methods that have been believed to be effective in addressing the class imbalance problem may, in fact, only be effective on learning with imbalanced two-class data sets.
Keywords :
data mining; learning (artificial intelligence); neural nets; sampling methods; class imbalance learning; cost-sensitive learning; cost-sensitive neural network training; data mining; ensemble learning; machine learning; oversampling technique; threshold-moving; undersampling technique; Costs; Data mining; Decision trees; Learning systems; Machine learning; Neural networks; Sampling methods; Testing; Training data; Voting; Index Terms- Machine learning; class imbalance learning; cost-sensitive learning; data mining; ensemble learning.; neural networks; sampling; threshold-moving;
fLanguage :
English
Journal_Title :
Knowledge and Data Engineering, IEEE Transactions on
Publisher :
ieee
ISSN :
1041-4347
Type :
jour
DOI :
10.1109/TKDE.2006.17
Filename :
1549828
Link To Document :
بازگشت