• DocumentCode
    756139
  • Title

    Pattern classification using neural networks

  • Author

    Lippmann, R.P.

  • Author_Institution
    MIT Lincoln Lab., Lexington, MA, USA
  • Volume
    27
  • Issue
    11
  • fYear
    1989
  • Firstpage
    47
  • Lastpage
    50
  • Abstract
    The author extends a previous review and focuses on feed-forward neural-net classifiers for static patterns with continuous-valued inputs. He provides a taxonomy of neural-net classifiers, examining probabilistic, hyperplane, kernel, and exemplar classifiers. He then discusses back-propagation and decision-tree classifiers; matching classifier complexity to training data; GMDH (generalized method of data handling) networks and high-order nets; K nearest-neighbor classifiers; the feature-map classifier; the learning vector quantizer; hypersphere classifiers; and radial-basis function classifiers.<>
  • Keywords
    neural nets; pattern recognition; K nearest-neighbor classifiers; back-propagation; classifier complexity; continuous-valued inputs; decision-tree; exemplar; feature-map classifier; feed-forward; generalized method of data handling; high-order nets; hyperplane; hypersphere classifiers; kernel; learning vector quantizer; neural networks; neural-net; probabilistic; radial-basis function classifiers; static patterns; training data; Data handling; Feedforward systems; Kernel; Neural networks; Pattern classification; Taxonomy; Training data;
  • fLanguage
    English
  • Journal_Title
    Communications Magazine, IEEE
  • Publisher
    ieee
  • ISSN
    0163-6804
  • Type

    jour

  • DOI
    10.1109/35.41401
  • Filename
    41401