• DocumentCode
    758740
  • Title

    Fusion of Hidden Markov Random Field Models and Its Bayesian Estimation

  • Author

    Destrempes, Francois ; Angers, Jean-Francois ; Mignotte, Max

  • Author_Institution
    DIRO, Univ. de Montreal, Que.
  • Volume
    15
  • Issue
    10
  • fYear
    2006
  • Firstpage
    2920
  • Lastpage
    2935
  • Abstract
    In this paper, we present a Hidden Markov Random Field (HMRF) data-fusion model. The proposed model is applied to the segmentation of natural images based on the fusion of colors and textons into Julesz ensembles. The corresponding Exploration/Selection/Estimation (ESE) procedure for the estimation of the parameters is presented. This method achieves the estimation of the parameters of the Gaussian kernels, the mixture proportions, the region labels, the number of regions, and the Markov hyper-parameter. Meanwhile, we present a new proof of the asymptotic convergence of the ESE procedure, based on original finite time bounds for the rate of convergence
  • Keywords
    Bayes methods; Gaussian processes; hidden Markov models; image colour analysis; image segmentation; parameter estimation; sensor fusion; Bayesian estimation; Gaussian kernels; Julesz ensemble textons; Markov hyper-parameter; asymptotic convergence; color fusion; exploration-selection-estimation procedure; hidden Markov random field data-fusion model; mixture proportions; natural image segmentation; parameter estimation; region labels; Bayesian methods; Biomedical imaging; Convergence; Entropy; Hidden Markov models; Image processing; Image segmentation; Kernel; Monte Carlo methods; Parameter estimation; Bayesian estimation; Exploration/Selection algorithm; Exploration/Selection/Estimation procedure; Julesz ensembles; Markov Chain Monte Carlo (MCMC) algorithm; color and texture segmentation; fusion of hidden Markov random field models;
  • fLanguage
    English
  • Journal_Title
    Image Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1057-7149
  • Type

    jour

  • DOI
    10.1109/TIP.2006.877522
  • Filename
    1703583