DocumentCode
758740
Title
Fusion of Hidden Markov Random Field Models and Its Bayesian Estimation
Author
Destrempes, Francois ; Angers, Jean-Francois ; Mignotte, Max
Author_Institution
DIRO, Univ. de Montreal, Que.
Volume
15
Issue
10
fYear
2006
Firstpage
2920
Lastpage
2935
Abstract
In this paper, we present a Hidden Markov Random Field (HMRF) data-fusion model. The proposed model is applied to the segmentation of natural images based on the fusion of colors and textons into Julesz ensembles. The corresponding Exploration/Selection/Estimation (ESE) procedure for the estimation of the parameters is presented. This method achieves the estimation of the parameters of the Gaussian kernels, the mixture proportions, the region labels, the number of regions, and the Markov hyper-parameter. Meanwhile, we present a new proof of the asymptotic convergence of the ESE procedure, based on original finite time bounds for the rate of convergence
Keywords
Bayes methods; Gaussian processes; hidden Markov models; image colour analysis; image segmentation; parameter estimation; sensor fusion; Bayesian estimation; Gaussian kernels; Julesz ensemble textons; Markov hyper-parameter; asymptotic convergence; color fusion; exploration-selection-estimation procedure; hidden Markov random field data-fusion model; mixture proportions; natural image segmentation; parameter estimation; region labels; Bayesian methods; Biomedical imaging; Convergence; Entropy; Hidden Markov models; Image processing; Image segmentation; Kernel; Monte Carlo methods; Parameter estimation; Bayesian estimation; Exploration/Selection algorithm; Exploration/Selection/Estimation procedure; Julesz ensembles; Markov Chain Monte Carlo (MCMC) algorithm; color and texture segmentation; fusion of hidden Markov random field models;
fLanguage
English
Journal_Title
Image Processing, IEEE Transactions on
Publisher
ieee
ISSN
1057-7149
Type
jour
DOI
10.1109/TIP.2006.877522
Filename
1703583
Link To Document