• DocumentCode
    769641
  • Title

    Evaluation of Stability of k-Means Cluster Ensembles with Respect to Random Initialization

  • Author

    Kuncheva, L.I. ; Vetrov, D.P.

  • Author_Institution
    Sch. of Informatics, Univ. of Wales, Bangor
  • Volume
    28
  • Issue
    11
  • fYear
    2006
  • Firstpage
    1798
  • Lastpage
    1808
  • Abstract
    Many clustering algorithms, including cluster ensembles, rely on a random component. Stability of the results across different runs is considered to be an asset of the algorithm. The cluster ensembles considered here are based on k-means clusterers. Each clusterer is assigned a random target number of clusters, k and is started from a random initialization. Here, we use 10 artificial and 10 real data sets to study ensemble stability with respect to random k, and random initialization. The data sets were chosen to have a small number of clusters (two to seven) and a moderate number of data points (up to a few hundred). Pairwise stability is defined as the adjusted Rand index between pairs of clusterers in the ensemble, averaged across all pairs. Nonpairwise stability is defined as the entropy of the consensus matrix of the ensemble. An experimental comparison with the stability of the standard k-means algorithm was carried out for k from 2 to 20. The results revealed that ensembles are generally more stable, markedly so for larger k. To establish whether stability can serve as a cluster validity index, we first looked at the relationship between stability and accuracy with respect to the number of clusters, k. We found that such a relationship strongly depends on the data set, varying from almost perfect positive correlation (0.97, for the glass data) to almost perfect negative correlation (-0.93, for the crabs data). We propose a new combined stability index to be the sum of the pairwise individual and ensemble stabilities. This index was found to correlate better with the ensemble accuracy. Following the hypothesis that a point of stability of a clustering algorithm corresponds to a structure found in the data, we used the stability measures to pick the number of clusters. The combined stability index gave best results
  • Keywords
    pattern clustering; stability; adjusted Rand index; cluster validity index; clustering algorithms; k-means cluster ensembles stability; pairwise stability; random initialization; stability index; Clustering algorithms; Clustering methods; Entropy; Glass; Partitioning algorithms; Protocols; Shape; Stability; Voting; Clustering; cluster ensembles; cluster validity.; stability and diversity; Algorithms; Artificial Intelligence; Cluster Analysis; Computer Simulation; Image Enhancement; Image Interpretation, Computer-Assisted; Information Storage and Retrieval; Models, Statistical; Pattern Recognition, Automated; Random Allocation; Reproducibility of Results; Sensitivity and Specificity;
  • fLanguage
    English
  • Journal_Title
    Pattern Analysis and Machine Intelligence, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0162-8828
  • Type

    jour

  • DOI
    10.1109/TPAMI.2006.226
  • Filename
    1704835