DocumentCode
77316
Title
Limit Theorems in Hidden Markov Models
Author
Guangyue Han
Author_Institution
Univ. of Hong Kong, Hong Kong, China
Volume
59
Issue
3
fYear
2013
fDate
Mar-13
Firstpage
1311
Lastpage
1328
Abstract
In this paper, under mild assumptions, we derive a law of large numbers, a central limit theorem with an error estimate, an almost sure invariance principle, and a variant of the Chernoff bound in finite-state hidden Markov models. These limit theorems are of interest in certain areas of information theory and statistics. Particularly, we apply the limit theorems to derive the rate of convergence of the maximum likelihood estimator in finite-state hidden Markov models.
Keywords
entropy; hidden Markov models; maximum likelihood estimation; Chernoff bound; central limit theorem; entropy; error estimate; finite-state hidden Markov models; information theory; maximum likelihood estimator; Context; Convergence; Hidden Markov models; Information theory; Maximum likelihood estimation; Probabilistic logic; Random variables; Entropy; Shannon-McMillan-Breiman theorem; hidden Markov models; limit theorem;
fLanguage
English
Journal_Title
Information Theory, IEEE Transactions on
Publisher
ieee
ISSN
0018-9448
Type
jour
DOI
10.1109/TIT.2012.2226701
Filename
6362212
Link To Document