• DocumentCode
    77316
  • Title

    Limit Theorems in Hidden Markov Models

  • Author

    Guangyue Han

  • Author_Institution
    Univ. of Hong Kong, Hong Kong, China
  • Volume
    59
  • Issue
    3
  • fYear
    2013
  • fDate
    Mar-13
  • Firstpage
    1311
  • Lastpage
    1328
  • Abstract
    In this paper, under mild assumptions, we derive a law of large numbers, a central limit theorem with an error estimate, an almost sure invariance principle, and a variant of the Chernoff bound in finite-state hidden Markov models. These limit theorems are of interest in certain areas of information theory and statistics. Particularly, we apply the limit theorems to derive the rate of convergence of the maximum likelihood estimator in finite-state hidden Markov models.
  • Keywords
    entropy; hidden Markov models; maximum likelihood estimation; Chernoff bound; central limit theorem; entropy; error estimate; finite-state hidden Markov models; information theory; maximum likelihood estimator; Context; Convergence; Hidden Markov models; Information theory; Maximum likelihood estimation; Probabilistic logic; Random variables; Entropy; Shannon-McMillan-Breiman theorem; hidden Markov models; limit theorem;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2012.2226701
  • Filename
    6362212