DocumentCode
77345
Title
On the Covering Radius of First-Order Generalized Reed–Muller Codes
Author
Leducq, E.
Author_Institution
Inst. de Math. de Jussieu, Univ. Paris Diderot, Paris, France
Volume
59
Issue
3
fYear
2013
fDate
Mar-13
Firstpage
1590
Lastpage
1596
Abstract
We generalize to any finite Fq fields a theorem about covering radius of codes of strength 2 proved by Helleseth and coworkers. Then,using this result and partial covering radius, we give bounds for the covering radius of first-order generalized Reed-Muller codes. Finally, using Magma, we get some improvements for F3.
Keywords
Reed-Muller codes; first-order generalized Reed-Muller codes; partial covering radius; Binary codes; Frequency modulation; Hamming weight; Indexes; Kernel; Polynomials; Upper bound; Covering radius; generalized Reed–Muller codes;
fLanguage
English
Journal_Title
Information Theory, IEEE Transactions on
Publisher
ieee
ISSN
0018-9448
Type
jour
DOI
10.1109/TIT.2012.2230216
Filename
6362214
Link To Document