DocumentCode :
773557
Title :
A distributed Cooperative coevolutionary algorithm for multiobjective optimization
Author :
Tan, K.C. ; Yang, Y.J. ; Goh, C.K.
Author_Institution :
Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore
Volume :
10
Issue :
5
fYear :
2006
Firstpage :
527
Lastpage :
549
Abstract :
Recent advances in evolutionary algorithms show that coevolutionary architectures are effective ways to broaden the use of traditional evolutionary algorithms. This paper presents a cooperative coevolutionary algorithm (CCEA) for multiobjective optimization, which applies the divide-and-conquer approach to decompose decision vectors into smaller components and evolves multiple solutions in the form of cooperative subpopulations. Incorporated with various features like archiving, dynamic sharing, and extending operator, the CCEA is capable of maintaining archive diversity in the evolution and distributing the solutions uniformly along the Pareto front. Exploiting the inherent parallelism of cooperative coevolution, the CCEA can be formulated into a distributed cooperative coevolutionary algorithm (DCCEA) suitable for concurrent processing that allows inter-communication of subpopulations residing in networked computers, and hence expedites the computational speed by sharing the workload among multiple computers. Simulation results show that the CCEA is competitive in finding the tradeoff solutions, and the DCCEA can effectively reduce the simulation runtime without sacrificing the performance of CCEA as the number of peers is increased
Keywords :
Pareto optimisation; divide and conquer methods; evolutionary computation; Pareto optimization; concurrent processing; distributed cooperative coevolutionary algorithm; divide-and-conquer approach; evolutionary algorithms; multiobjective optimization; networked computers; Application software; Computational modeling; Computer networks; Concurrent computing; Distributed computing; Evolutionary computation; Genetic algorithms; Parallel processing; Runtime; Sorting; Coevolution; distributed computing; evolutionary algorithms; multiobjective optimization;
fLanguage :
English
Journal_Title :
Evolutionary Computation, IEEE Transactions on
Publisher :
ieee
ISSN :
1089-778X
Type :
jour
DOI :
10.1109/TEVC.2005.860762
Filename :
1705402
Link To Document :
بازگشت