• DocumentCode
    777
  • Title

    Pedestrian Simultaneous Localization and Mapping in Multistory Buildings Using Inertial Sensors

  • Author

    Puyol, Maria Garcia ; Bobkov, Dmytro ; Robertson, Paul ; Jost, Thomas

  • Author_Institution
    Inst. of Commun. & Navig., German Aerosp. Center (DLR), Wessling, Germany
  • Volume
    15
  • Issue
    4
  • fYear
    2014
  • fDate
    Aug. 2014
  • Firstpage
    1714
  • Lastpage
    1727
  • Abstract
    Pedestrian navigation is an important ingredient for efficient multimodal transportation, such as guidance within large transportation infrastructures. A requirement is accurate positioning of people in indoor multistory environments. To achieve this, maps of the environment play a very important role. FootSLAM is an algorithm based on the simultaneous localization and mapping (SLAM) principle that relies on human odometry, i.e., measurements of a pedestrian´s steps, to build probabilistic maps of human motion for such environments and can be applied using crowdsourcing. In this paper, we extend FootSLAM to multistory buildings following a Bayesian derivation. Our approach employs a particle filter and partitions the map space into a grid of adjacent hexagonal prisms with eight faces. We model the vertical component of the odometry errors using an autoregressive integrated moving average (ARIMA) model and extend the geographic tree-based data structure that efficiently stores the probabilistic map, allowing real-time processing. We present the multistory FootSLAM maps that were created from three data sets collected in different buildings (one large office building and two university buildings). Hereby, the user was only carrying a single foot-mounted inertial measurement unit (IMU). We believe the resulting maps to be strong evidence of the robustness of FootSLAM. This paper raises the future possibility of crowdsourced indoor mapping and accurate navigation using other forms of human odometry, e.g., obtained with the low-cost and nonintrusive sensors of a handheld smartphone.
  • Keywords
    autoregressive moving average processes; buildings (structures); distance measurement; inertial navigation; inertial systems; particle filtering (numerical methods); pedestrians; traffic engineering computing; tree data structures; ARIMA; Bayesian derivation; FootSLAM; IMU; adjacent hexagonal prisms; autoregressive integrated moving average model; geographic tree-based data structure; handheld smartphone; human odometry; indoor multistory environments; inertial sensors; map space; multimodal transportation; multistory buildings; nonintrusive sensors; pedestrian navigation; pedestrian simultaneous localization and mapping; probabilistic human motion maps; single foot-mounted inertial measurement unit; transportation infrastructures; Buildings; Data structures; Navigation; Probabilistic logic; Simultaneous localization and mapping; Vectors; Indoor pedestrian navigation; inertial navigation; multistory localization and mapping; simultaneous localization and mapping (SLAM);
  • fLanguage
    English
  • Journal_Title
    Intelligent Transportation Systems, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1524-9050
  • Type

    jour

  • DOI
    10.1109/TITS.2014.2303115
  • Filename
    6746646