• DocumentCode
    77749
  • Title

    An Antinoise Method for Hyperspectral Unmixing

  • Author

    Chunzhi Li ; Aimin Zhou ; Guixu Zhang ; Faming Fang

  • Author_Institution
    Dept. of Comput. Sci. & Technol., East China Normal Univ., Shanghai, China
  • Volume
    12
  • Issue
    3
  • fYear
    2015
  • fDate
    Mar-15
  • Firstpage
    636
  • Lastpage
    640
  • Abstract
    In this letter, we propose an antinoise method for hyperspectral unmixing. In the antinoise method, all noises are addressed. The following techniques are applied: 1) an endmember dictionary is constructed first to initialize the solution; 2) an approximated L0 norm constraint is employed to prune the dictionary and fulfill the sparse coding; and 3) the Itakura-Saito divergence, instead of the Square of Euclidean Distance divergence, is utilized to construct a novel optimization function. The experimental results on both synthetic and real hyperspectral data sets demonstrate the efficacy of the proposed method.
  • Keywords
    geophysical image processing; geophysical signal processing; geophysical techniques; hyperspectral imaging; Itakura-Saito divergence; Square of Euclidean Distance divergence; antinoise method; approximated L0 norm constraint; endmember dictionary; hyperspectral image analysis; hyperspectral unmixing; optimization function; real hyperspectral data set; sparse coding; synthetic hyperspectral data set; Dictionaries; Encoding; Estimation; Hyperspectral imaging; Noise; Antinoise method; Itakura–Saito (IS) divergence; Itakura??Saito (IS) divergence; dictionary pruning; sparse coding; spectral unmixing (SU);
  • fLanguage
    English
  • Journal_Title
    Geoscience and Remote Sensing Letters, IEEE
  • Publisher
    ieee
  • ISSN
    1545-598X
  • Type

    jour

  • DOI
    10.1109/LGRS.2014.2354399
  • Filename
    6905758