• DocumentCode
    777649
  • Title

    Calculation of Electrical and Radiation Storage Time in Transistors

  • Author

    Gage, Donald S.

  • Author_Institution
    Electrical Engineering Department Michigan State University East Lansing, Michigan
  • Volume
    12
  • Issue
    5
  • fYear
    1965
  • Firstpage
    112
  • Lastpage
    125
  • Abstract
    The conventional viewpoint of saturation in junction transistors, from a device point of view, considers the excess minority carriers in the base region. A different viewpoint considers the majority carriers in the base. The important elements then are the number of these carriers stored in the transistor and whether they are stored in the active base region, the extrinsic base region, the collector body, or the epitaxial layer. The storage of carriers in the active base region plays a relatively minor role in the storage effect for most modern transistors because of the small volume of semiconductor material involved. In alloy, diffused, and epitaxial transistors the storage of carriers (electrons in a PNP transistor) is shown to be in the last three regions named above, respectively; in none of these transistor types is the storage region identifiable as the active base region. This new viewpoint leads to well-accepted storage-time expressions for alloy and diffused transistors and to new storage-time expressions for epitaxial transistors. Detailed calculations of the primary photocurrent have been made for three practical transistor construction types that relate this current to basic device parameters and to the electrical storage time. In addition, the radiation storage time has been calculated in terms of the electrical storage time for epitaxial transistors. Examples of these calculations are given and the results presented.
  • Keywords
    Batteries; Circuits; Electrons; Epitaxial layers; Ionizing radiation; Lead; Material storage; Semiconductor materials; Time measurement; Visualization;
  • fLanguage
    English
  • Journal_Title
    Nuclear Science, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9499
  • Type

    jour

  • DOI
    10.1109/TNS.1965.4323906
  • Filename
    4323906