• DocumentCode
    779358
  • Title

    Optimal dimensionality reduction of sensor data in multisensor estimation fusion

  • Author

    Zhu, Yunmin ; Song, Enbin ; Zhou, Jie ; You, Zhisheng

  • Author_Institution
    Dept. of Math., Sichuan Univ., China
  • Volume
    53
  • Issue
    5
  • fYear
    2005
  • fDate
    5/1/2005 12:00:00 AM
  • Firstpage
    1631
  • Lastpage
    1639
  • Abstract
    When there exists the limitation of communication bandwidth between sensors and a fusion center, one needs to optimally precompress sensor outputs-sensor observations or estimates before the sensors´ transmission in order to obtain a constrained optimal estimation at the fusion center in terms of the linear minimum error variance criterion, or when an allowed performance loss constraint exists, one needs to design the minimum dimension of sensor data. This paper will answer the above questions by using the matrix decomposition, pseudo-inverse, and eigenvalue techniques.
  • Keywords
    eigenvalues and eigenfunctions; matrix decomposition; sensor fusion; communication bandwidth; eigenvalue technique; linear minimum error variance criterion; matrix decomposition; minimum dimension; multisensor estimation fusion; optimal dimensionality reduction; optimally precompress sensor outputs-sensor observation; pseudo-inverse technique; sensor data; Bandwidth; Computer science; Eigenvalues and eigenfunctions; Mathematics; Matrix decomposition; Performance loss; Propagation losses; Sensor fusion; Sensor systems; System performance; Linear compression; minimum variance estimation; multisensor estimation fusion;
  • fLanguage
    English
  • Journal_Title
    Signal Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1053-587X
  • Type

    jour

  • DOI
    10.1109/TSP.2005.845429
  • Filename
    1420805