DocumentCode :
780768
Title :
Algebraic decoding of (71, 36, 11), (79, 40, 15), and (97, 49, 15) quadratic residue codes
Author :
Chang, Yaotsu ; Truong, Trieu-Kien ; Reed, Irving S. ; Cheng, H.Y. ; Lee, C.-D.
Author_Institution :
Dept. of Appl. Math., I-Shou Univ., Kaohsiung, Taiwan
Volume :
51
Issue :
9
fYear :
2003
Firstpage :
1463
Lastpage :
1473
Abstract :
Recently, a new algebraic decoding algorithm for quadratic residue (QR) codes was proposed by Truong et al. Using that decoding scheme, we now develop three decoders for the QR codes with parameters (71, 36, 11), (79, 40, 15), and (97, 49, 15), which have not been decoded before. To confirm our results, an exhaustive computer simulation has been executed successfully.
Keywords :
binary codes; cyclic codes; decoding; matrix algebra; polynomials; residue codes; Berlekamp-Massey algorithm; algebraic decoding; binary codes; cyclic codes; error-locator polynomial; matrices; quadratic residue codes; Communications Society; Computer simulation; Councils; Decoding; Hardware; Mathematics; Nonlinear equations; Polynomials; Search methods;
fLanguage :
English
Journal_Title :
Communications, IEEE Transactions on
Publisher :
ieee
ISSN :
0090-6778
Type :
jour
DOI :
10.1109/TCOMM.2003.816994
Filename :
1231644
Link To Document :
بازگشت