• DocumentCode
    785845
  • Title

    SF6 Decomposition in Gas-Insulated Equipment

  • Author

    Chu, F.Y.

  • Author_Institution
    Ontario Hydro Research Division, Toronto, Canada
  • Issue
    5
  • fYear
    1986
  • Firstpage
    693
  • Lastpage
    725
  • Abstract
    The increasing application of SF6 as an insulating gas has led to many studies on SF6 decomposition in gas-insulated equipment. In the presence-of an electric arc, spark or corona, SF6 decomposes to a wide variety of chemically active products which possess completely different properties from SF6. The accumulation of these decomposition products in the equipment has caused concerns regarding personnel safety and material compatibility problems. This paper reviews previous research in SF6 decomposition relating to the operation of gas-insulated switchgears, gas-insulated transmission lines, and electrostatic accelerators. Results on the qualitative and quantitative determination of the by-products and their formation ion rates in various modes of electrical discharges are summarized. The mechanisms leading to the formation of transient and stable products are described. In particular, the influence of discharge energies and impurities on the formation of SOF2 and SO2F2, the two dominant stable by-products, is discussed. The effects of the by-products on personnel safety and equipment ent dielectric integrity are presented. The application of SF6 gas analysis as a tool for diagnosing the internal condition of gas-insulated equipment is assessed. Based on the results of many phenomenological observations, future research activities are suggested to address the issues of safety, compatibility and equipment aging. More fundamental studies on electron, ion, and neutral reaction rates in an SF6 discharge are required to gain a better understanding of the decompositon mechanisms and the influence of the products on equipment operation.
  • Keywords
    Chemical products; Corona; Gas insulated transmission lines; Gas insulation; Personnel; Product safety; Safety devices; Sparks; Sulfur hexafluoride; Switchgear;
  • fLanguage
    English
  • Journal_Title
    Electrical Insulation, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9367
  • Type

    jour

  • DOI
    10.1109/TEI.1986.348921
  • Filename
    4157059