• DocumentCode
    790680
  • Title

    Eigenvalue perturbation models for robust control

  • Author

    Smith, Roy S.

  • Author_Institution
    Dept. of Electr. & Comput. Eng., California Univ., Santa Barbara, CA, USA
  • Volume
    40
  • Issue
    6
  • fYear
    1995
  • fDate
    6/1/1995 12:00:00 AM
  • Firstpage
    1063
  • Lastpage
    1066
  • Abstract
    This paper presents a nonconservative description of the regions containing the eigenvalues of a diagonal matrix, perturbed by the set of all unknown, Euclidean norm bounded matrices. This is extended to real valued block diagonal matrices where each two-by-two block reveals a complex conjugate pair of eigenvalues. A weighting matrix allows one to specify the exact size of the perturbation to each of the eigenvalues. An identical result is obtained for real valued perturbations. This result is motivated by, and applied to, the modeling of frequency and damping perturbations in models of flexible structures. The resulting perturbation description fits within the established H robust control framework and, in certain situations, is less conservative than the more standard additive or multiplicative perturbation models
  • Keywords
    H control; eigenvalues and eigenfunctions; flexible structures; matrix algebra; perturbation techniques; robust control; Euclidean norm bounded matrices; H robust control; block diagonal matrices; complex conjugate pair; damping perturbation; diagonal matrix; eigenvalue perturbation models; flexible structures; frequency perturbation; robust control; weighting matrix; Damping; Eigenvalues and eigenfunctions; Flexible structures; Frequency; NASA; Propulsion; Robust control; Transfer functions; Uncertainty;
  • fLanguage
    English
  • Journal_Title
    Automatic Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9286
  • Type

    jour

  • DOI
    10.1109/9.388684
  • Filename
    388684