DocumentCode
794285
Title
On the optimal parameter choice for ν-support vector machines
Author
Steinwart, Ingo
Author_Institution
Modeling, Algorithms, & Informatics Group, Los Alamos Nat. Lab., NM, USA
Volume
25
Issue
10
fYear
2003
Firstpage
1274
Lastpage
1284
Abstract
We determine the asymptotically optimal choice of the parameter ν for classifiers of ν-support vector machine (ν-SVM) type which has been introduced by Scholkopf et al. (2000). It turns out that ν should be a close upper estimate of twice the optimal Bayes risk provided that the classifier uses a so-called universal kernel such as the Gaussian RBF kernel. Moreover, several experiments show that this result can be used to implement some modified cross validation procedures which improve standard cross validation for ν-SVMs.
Keywords
learning automata; parameter estimation; pattern recognition; PAC model; cross validation; parameter selection; support vector machines; Equations; H infinity control; Kernel; Noise level; Noise measurement; Support vector machine classification; Support vector machines; Upper bound;
fLanguage
English
Journal_Title
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher
ieee
ISSN
0162-8828
Type
jour
DOI
10.1109/TPAMI.2003.1233901
Filename
1233901
Link To Document