• DocumentCode
    794285
  • Title

    On the optimal parameter choice for ν-support vector machines

  • Author

    Steinwart, Ingo

  • Author_Institution
    Modeling, Algorithms, & Informatics Group, Los Alamos Nat. Lab., NM, USA
  • Volume
    25
  • Issue
    10
  • fYear
    2003
  • Firstpage
    1274
  • Lastpage
    1284
  • Abstract
    We determine the asymptotically optimal choice of the parameter ν for classifiers of ν-support vector machine (ν-SVM) type which has been introduced by Scholkopf et al. (2000). It turns out that ν should be a close upper estimate of twice the optimal Bayes risk provided that the classifier uses a so-called universal kernel such as the Gaussian RBF kernel. Moreover, several experiments show that this result can be used to implement some modified cross validation procedures which improve standard cross validation for ν-SVMs.
  • Keywords
    learning automata; parameter estimation; pattern recognition; PAC model; cross validation; parameter selection; support vector machines; Equations; H infinity control; Kernel; Noise level; Noise measurement; Support vector machine classification; Support vector machines; Upper bound;
  • fLanguage
    English
  • Journal_Title
    Pattern Analysis and Machine Intelligence, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0162-8828
  • Type

    jour

  • DOI
    10.1109/TPAMI.2003.1233901
  • Filename
    1233901