• DocumentCode
    79812
  • Title

    Hyper Jet Focused-Injection Tapered Capillary Plasma Source Concept

  • Author

    Winfrey, A. Leigh ; Mittal, Shawn ; Abd Al-Halim, Mohamed A.

  • Author_Institution
    Nucl. Eng. Program, Univ. of Florida, Gainesville, FL, USA
  • Volume
    43
  • Issue
    6
  • fYear
    2015
  • fDate
    Jun-15
  • Firstpage
    2104
  • Lastpage
    2109
  • Abstract
    The concept of tapered capillary is introduced as a method of injecting focused plasma jet into the breach of bulk-loaded electrothermal-chemical (ETC) launcher. Tapered capillaries will operate in the confined controlled arc regime, and they can provide the advantage of producing focused hyper plasma jets useful for ignition of ETC systems at controlled plasma temperatures and pressures. The concept is also useful for focused implantation of plasma ions on substrates with desired patterns. Such tapered capillaries can inject plasmas at peak kinetic temperatures in the range of 14000-21000 K (~1.2-1.8 eV) and considerable jet pressures of 10-70 MPa for an input discharge current of 20-30 kA over a short pulselength of 100-150 μs. A tapered geometry made of Lexan polycarbonate with 16.8-mm inlet and 8.8-mm outlet radii produces a plasma jet with a plasma temperature of 14253 K (1.23 eV) at a peak bulk velocity of 4.027 km/s with a 10.38-MPa exit pressure, and a total ablated mass of 10.56 mg. Reducing the tapering to 12.6-mm inlet and 6.6-mm outlet radii produces a plasma jet with a plasma temperature of 16382-K (1.411 eV) at a bulk velocity of 4.34 km/s and a total of 23.27-mg ablated mass. Further reduction in the tapering to 8.4-mm inlet and 4.4-mm outlet radii produces a plasma jet with a plasma temperature of 20954 K (1.8 eV) at a bulk velocity of 4.89 km/s with a 70.78-MPa exit pressure, and a total ablated mass of 15.09 mg. The preliminary study shows that the narrow tapering angle produces higher pressure, temperature, velocity, and more ablated mass. Radiant heat flux at the taper exit varies from 2.2 GW/m2 for the wider tapers to 6.24 GW/m2 for the narrower ones.
  • Keywords
    arcs (electric); electrothermal launchers; ion implantation; plasma jets; plasma temperature; polymers; pressure control; temperature control; weapons; ETC launcher; ETC systems; Lexan polycarbonate; bulk-loaded electrothermal-chemical launcher; confined controlled arc regime; current 20 kA to 30 kA; discharge current; exit pressure; focused implantation; hyper jet focused-injection; jet pressures; kinetic temperatures; plasma ions; plasma temperatures; pressure 10 MPa to 70 MPa; pressure 70.78 MPa; radiant heat flux; radius 12.6 mm; radius 16.8 mm; radius 4.4 mm; radius 6.6 mm; radius 8.4 mm; radius 8.8 mm; taper exit; tapered capillary plasma source concept; tapering angle; temperature 14000 K to 21000 K; time 100 mus to 150 mus; Discharges (electric); Fault location; Heating; Plasma temperature; Temperature distribution; Capillary discharge; electrothermal (ET) plasma; tapered hyper jet sources; tapered hyper jet sources.;
  • fLanguage
    English
  • Journal_Title
    Plasma Science, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0093-3813
  • Type

    jour

  • DOI
    10.1109/TPS.2015.2417878
  • Filename
    7113900