Title :
An analysis of neural models for walking control
Author :
Reeve, Richard ; Hallam, John
Author_Institution :
Sch. of Informatics, Univ. of Edinburgh, UK
fDate :
5/1/2005 12:00:00 AM
Abstract :
A large space of different neural models exists from simple mathematical abstractions to detailed biophysical representations with strongly differing levels of complexity and biological relevance. Previous comparisons between models have looked at biological realism or mathematical tractability rather than expressive power. This paper, however, investigates whether more sophisticated models are better suited to a complex sensorimotor control task than simpler ones, or whether the more general nature of groups of the simpler neurons allows them to collectively solve complex tasks better despite their individual simplicity. Many models have been proposed or used for sensorimotor control tasks such as the control of locomotion. Four such neural models with varying levels of complexity were chosen. Controllers made of networks of each neural type were evolved to generate locomotion in a simulated dynamically stable four-legged robot using a genetic algorithm. The problem domain was chosen as one for which no simple solution could be hand crafted and which, with its tight sensorimotor coupling, had strongly time-dependent properties as is common in many biological control tasks. Analysis of the results shows that the most complex and biologically based model is significantly better at walking control, even producing recognizable gaits.
Keywords :
genetic algorithms; legged locomotion; motion control; neurocontrollers; biological realism; complex sensorimotor control; four legged robot; genetic algorithm; mathematical tractibility; neural model; walking control; Biological control systems; Biological system modeling; Biology computing; Legged locomotion; Mathematical model; Neurons; Robot control; Robot sensing systems; Shape control; Sliding mode control; Genetic algorithms; legged locomotion; neural model comparison; walking control; Algorithms; Animals; Biomimetics; Computer Simulation; Feedback; Humans; Locomotion; Models, Neurological; Neural Networks (Computer); Numerical Analysis, Computer-Assisted; Robotics;
Journal_Title :
Neural Networks, IEEE Transactions on
DOI :
10.1109/TNN.2005.844901