DocumentCode :
800425
Title :
Simplified parameter quantization procedure for adaptive estimation
Author :
Sengbush, R. ; Lainiotis, D.
Author_Institution :
University of Texas, Austin, TX, USA
Volume :
14
Issue :
4
fYear :
1969
fDate :
8/1/1969 12:00:00 AM
Firstpage :
424
Lastpage :
425
Abstract :
Optimum Kalman filter design often requires estimation of the true value of an unknown parameter vector. In Magill´s adaptive procedure, the parameter space must be quantized. An accurate estimate of the true value requires fine quantization, but this results in an unreasonable number of elemental filters. Iterative techniques that require only binary quantization of each unknown parameter are proposed. This reduces the number of elemental filters without sacrificing accuracy of the parameter estimate.
Keywords :
Adaptive Kalman filtering; Parameter estimation; Adaptive estimation; Artificial intelligence; Computer simulation; Filters; Frequency; Gold; Quantization; Sampling methods; Servomechanisms; Transfer functions;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.1969.1099189
Filename :
1099189
Link To Document :
بازگشت