• DocumentCode
    80426
  • Title

    Feature-Based Human Model for Digital Apparel Design

  • Author

    Shuxia Wang ; Shengfeng Qin ; Congying Guan

  • Author_Institution
    Sch. of Mech. Eng., Northwestern Polytech. Univ., Xi´an, China
  • Volume
    11
  • Issue
    2
  • fYear
    2014
  • fDate
    Apr-14
  • Firstpage
    620
  • Lastpage
    626
  • Abstract
    Three-dimensional (3D) body scanning technology opens opportunities for virtual try-on and automatic made-to-measure apparel design. This paper proposes a new feature-based parametric method for modeling human body shape from scanned point clouds of a 3D body scanner [TC]2. The human body model consists of two layers: the skeleton and the cross sections of each body part. First, a simple skeleton model from the body scanner [TC]2 system has been improved by adding and adjusting the position of joints in order to better address some fit issues related to body shape changes such as spinal bending. Second, an automatic approach to extracting semantic features for cross sections has been developed based on the body hierarchy. For each cross section, it is described by a set of key points which can be fit with a closed cardinal spline. According to the point distribution in point clouds, an extraction method of key points on cross sections has been studied and developed. Third, this paper presents an interpolation approach to fitting the key points on a cross section to a cardinal spline, in which different tension parameters are tested and optimized to represent simple deformations of body shape. Finally, a connection approach of body parts is proposed by sharing a boundary curve. The proposed method has been tested with the developed virtual human model (VHM) system which is robust and easier to use. The model can also be imported in a CAD environment for other applications.
  • Keywords
    CAD; clothing; clothing industry; feature extraction; interpolation; optimisation; product design; splines (mathematics); 3D body scanning technology; VHM system; automatic made-to-measure apparel design; body shape changes; boundary curve; closed cardinal spline; digital apparel design; feature-based human model; human body shape modelling; interpolation approach; semantic feature extraction; spinal bending; tension parameters optimization; virtual human model; virtual try-on apparel design; Biological system modeling; Clothing; Joints; Shape; Solid modeling; Three-dimensional displays; Apparel design; apparel-fit-to-body issues; human body modeling; parametric modeling;
  • fLanguage
    English
  • Journal_Title
    Automation Science and Engineering, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1545-5955
  • Type

    jour

  • DOI
    10.1109/TASE.2014.2300876
  • Filename
    6727488